Math´ematiquesDur´ee : 3 heures. - Coefficient : 3Les exercices sont ind´ependants.La calculatrice personnelle est interdite.Exercice 1Notations : M (C) d´esigne l’ensemble des matrices carr´ees de dimension 3 sur le corps C. a, b, c sont des nombres3complexes. On note I, J et M(a,b,c) les matrices suivantes 1 0 0 0 1 0 a b c 0 1 0 0 0 1 c a bI = J = M(a,b,c) =0 0 1 1 0 0 b c a2iπ/3 2 4iπ/3On note j =e . j =j =e est une autre racine cubique de l’unit´e.Partie I2 3I.1. Calculer J et J .I.2. D´eterminer les valeurs propres de J. La matrice J est-elle diagonalisable sur le corps C? L’est-elle sur lecorpsR?I.3. Pour chaque valeur propre de J d´eterminer le vecteur propre associ´e ayant 1 pour premi`ere composante, etune matrice P de passage a` une base de vecteurs propres. 2 3I.4. ExprimerlamatriceM(a,b,c)a`l’aidedesmatricesI,J etJ .End´eduirequeH = M(a,b,c)| (a,b,c)∈Cest un sous-espace vectoriel deM (C) pour les lois usuelles (somme et loi externe). Pr´ecisez la dimension3de H.2I.5. Montrer que les vecteurs propres (complexes) deJ sont aussi vecteurs propres deJ ainsi que deM(a,b,c).En d´eduire les valeurs propres de M(a,b,c) `a l’aide de celles de J, puis en fonction du nombre complexe j.I.6. Montrer que tout ´el´ement de H est diagonalisable surC. Donner la d´ecomposition de M(a,b,c) en fonctionde la matrice P du I.3 et d’une matrice diagonale que l’on explicitera.I.7. On suppose ici que les coefficients (a,b,c) sont r´eels.a) ...
Voir