7
pages
Français
Documents
2004
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
7
pages
Français
Documents
2004
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Durée:3heures
BaccalauréatESAmériqueduNordmai2004
L’utilisation d’unecalculatriceestautorisée.
Desélémentsdeformulairesontjointsausujet.
EXERCICE1 5points
Communàtouslescandidats
LespartiesAetBsontindépendantes.
Àlarentréescolaire,onfaituneenquêtedansuneclassedesixièmecomprenant25
élèves.
PartieA:
1
Onsait que,danscetteclasse, 48%desélèves ont 11ans, ont13 ansetles autres
5
ont 12 ans. Ces élèves utilisent deux types de sacs de cours : le sac à dos ou le car-
2
table classique. 15 élèves, dont les ont 11 ans, ont acheté un cartable classique;
3
lesautres,dontlamoitiéont12ans,ontachetéunsacàdos.
1. Recopierletableausuivantsurvotrecopieetlecompléteràl’aidedesdonnées
del’énoncé:
Sacàdos Cartable Total
11ans
12ans
13ans
Total 25
2. Oninterrogeauhasardunélèvedecetteclasse.
Onnote:Sl’évènement :«l’élèveaunsacàdos».
Cl’évènement :«l’élèveauncartable».
Tl’évènement :«l’élèveatreizeans».
a. MontrerqueP(S)=0,4.
b. CalculerP(C ∩ T).
3. Oninterrogesuccessivementetdemanièreindépendantetroisélèvesdecette
classe;quelleestlaprobabilitéqu’exactementdeuxd’entreeuxaientunsacà
dos?
PartieB:
À leur inscription, ces élèves doivent souscrire une assurance scolaire; deux types
decontratsannuelssontproposés.D’aprèsdesétudesstatistiques,lecontratAdont
lecoûtestde20 € estchoisiavecuneprobabilitéde0,7 etlecontratBdontlecoût
estde30€ estchoisiavecuneprobabilitéde0,3.
Deplus,lecollègeproposeuneadhésionfacultativeaufoyercoopératif,d’unmon-
tantde15€.
Indépendammentducontratd’assurancechoisi,40%desélèvesprennentunecarte
d’adhérentdufoyer.
Onnote:
Al’évènement :«l’élèveachoisilecontratA»
Bl’évènement :«l’élèveachoisilecontratB»-
Fl’évènement :«l’élèveestadhérentdufoyer».
1. Construirel’arbredesprobabilitésassociéàlasituationdécriteci-dessus.
2. Quelle est la probabilité qu’un élève ait pris le contrat B et soit adhérent du
foyer?BaccalauréatSmai2004
3. À chaque élève pris auhasard,on associe le coût X de son inscription (assu-
rancescolaireplusadhésionéventuelleaufoyer);
a. Quellessontlesvaleurspossiblesdececoût?
b. Établir la loi de probabilité de ce coût et présenter le résultat dans un
tableau.
c. Calculer l’espérance mathématique de cette loi. Quelle interprétation
peut-onendonner?
EXERCICE2 5points
Candidatsn’ayantpassuivil’enseignementdespécialité
Unegrandeentreprisepubliechaqueannéesonchiffred’affaires,enmillions d’eu-
ros.
Letableauci-dessousdonneleschiffresd’affairesdesannées1995à2001.
Année 1995 1996 1997 1998 1999 2000 2001
Rangdel’année x 0 1 2 3 4 5 6i
Chiffred’affaires y 20,4 24,2 33,8 38,6 49 53,9 59,29i
enmillionsd’euros
Lenuagedespoints M ,associéàlasériestatistique(x ; y )dansunplanrapportéi i i
àunrepèreorthogonalestdonnéenannexe.
1. RépondresansjustificationparVraiouFauxauxquatreaffirmationssuivantes:
Lespourcentagessontarrondisaudixième.
a. Entre1997et1998,lechiffred’affairesaaugmentéde14,2%;
b. Entre2000et2001,l’augmentationenpourcentageduchiffred’affairesa
étélamêmequ’entre1999et2000;
c. Entre1995 et2001, l’augmentation annuelle moyenne, en pourcentage,
duchiffred’affairesaétéd’environ31,8%? ?
d. Onconsidèrelenuagedespoints M x ; y .Lescoordonnéesdupointi i i
moyendecenuagesont(3;38,6).
Oncherchemaintenantàfairedesprévisionssurlechiffred’affairespourl’an-
née2004enutilisantplusieursméthodes.
2. a. Expliquer pourquoi le nuage de points donné en annexe montre qu’un
ajustementaffinepeutêtreenvisagé.
b. Tracerladroited passantparM etM ;parlecturegraphique,détermi-1 0 6
neruneprévision n duchiffred’affairespourl’année2004.1
c. À l’aide de la calculatrice, donner une équation de la droite d , droite2
d’ajustement de y en x obtenueparlaméthodedesmoindrescarrés,en
arrondissantlescoefficientsaucentièmeleplusproche.Endéduireune
prévisionn duchiffred’affairespourl’année2004.2
3. On remarque que les valeurs du chiffre d’affaires correspondant aux années
1999,2000et2001formentunesuitegéométrique;onposedoncu =49, u =0 1
53,9etu =59,29.2
a. Calculerlaraisondecettesuite.
b. Calculerlavaleurdeu pourcettesuitegéométrique.Commentpeut-on5
l’interpréter?
AmériqueduNord 2 mai2004BaccalauréatSmai2004
EXERCICE2 5points
Candidatsayantsuivil’enseignementdespécialité
LespartiesAetBsontindépendantes.
PartieA
OnconsidèrelegrapheG ci-dessous:1
B
C
F A
DE
1. Justifierlesaffirmationssuivantes:
A .LegrapheG admetaumoinsunechaîneeulérienne.1 1
A .LachaîneDABCFBEFAEn’estpasunechaîneeulériennedeG .2 1
2. Déterminerunsous-graphecompletdeG ,ayantleplusgrandordrepossible.1
Endéduireunminorantdunombrechromatique γdecegraphe.
3. Déterminerunmajorantdecenombrechromatique.(Onjustifieralaréponse).
4. EnproposantunecolorationdugrapheG ,déterminersonnombrechroma-1
tique.
PartieB
SoitlamatriceMd’un grapheorientéG dontlessommets A,B,C,DetEsont pris2
dansl’ordrealphabétique.
0 1 1 1 0 6 6 4 5 3
1 0 1 0 1 5 6 5 3 6
3 OndonneM= 1 1 0 0 1 et M = 5 7 4 3 6 . 0 1 0 0 1 3 5 3 3 3
1 1 0 1 0 6 6 3 3 5
1. ConstruirelegrapheG .2
2. Déterminerlenombredechaînesdelongueur3reliantBàD.Lescitertoutes.
EXERCICE3 4points
Communàtouslescandidats
La représentation graphique (C) ci-dessous est celle d’une fonction f définie sur? ?
→− →−
′[−2; 3]danslerepère O, ı , .Onnote f lafonctiondérivéede f.
Lacourbe(C)vérifielespropriétéssuivantes:
Lespointsainsimarqués•sontàcoordonnéesentièresetappartiennentàlacourbe
tracée, la tangente au point d’abscisse−1 est parallèle à l’axe des abscisses, la tan-
genteaupointd’abscisse0coupel’axedesabscissesenx=2.
AmériqueduNord 3 mai2004BaccalauréatSmai2004
15
10
5
0
-2 -1 0 1 2
-5
1. Donneruneéquationdelatangenteaupointd’abscisse0.
2. Donnerlesvariationsde f
′3. Unedesquatrecourbesci-dessousreprésentegraphiquementlafonction f .
Déterminer celle quilareprésente, enjustifiant l’élimination dechacunedes
troisautrescourbes.
20 20
10 10
0 0
-2 -1 0 1 2 3 -2 -1 0 1 2 3
-10 -10
Figure1 Figure2
20 20
10 10
0 0
-2 -1 0 1 2 3 -2 -1 0 1 2 3
-10 -10
Figure3 Figure4
4. Onadmetquelafonction f estdéfinieparuneexpressiondelaforme
kxf(x)=(ax+b)e où a, b etk sontdesnombresréels.
′a. Déterminer f enfonctiondea, b etk.
b. En utilisant la question précédente et les propriétés de la courbe (C)
donnéesaudébutdel’exercice,calculer a, b etk.
EXERCICE4 5points
Communàtouslescandidats
Soit f lafonctiondéfiniesurl’intervalleI=]0;+∞[par
2(1+lnx)
f(x)= .
x
1. a. RésoudredansIl’équation f (x)=0;(Calculerlavaleurexactedelasolution,?
−3puisendonnerunevaleurarrondieà10 .
b. RésoudredansIl’inéquation f(x)>0.
AmériqueduNord 4 mai2004BaccalauréatSmai2004
2. Ondonneci-dessousletableaudevariationsde f surl’intervalleI.
Justifier tous les éléments contenus dans ce tableau (variations, limites, va-
leursnumériques).
x 0 1 +∞
′ + 0 −f (x)
2
f(x)
−∞ 0
I
3. Dansuneentreprise,onamodéliséparlafonction f surl’intervalle[0,2;+∞[
le«bénéfice»mensuel(éventuellement négatif)réaliséenvendant x milliers
d’objetsfabriqués.Cebénéficeestexpriméenmilliersd’euros.
En utilisant les résultats des questions précédentes, répondre aux questions
suivantes:
a. Quel nombre minimal d’objets l’entreprise doit-elle vendre mensuelle-
mentpourquelebénéficesoitpositif?
b. Combienfaut-ilvendred’objetspourréaliserlebénéficemaximal?Quel
estlemontantdecebénéficemaximal?
AmériqueduNord 5 mai2004BaccalauréatSmai2004
ANNEXEÀL’EXERCICE2(nonspécialistes)
Àrendreaveclacopie
y80
M660
M5
M4
40 M3
M2
M1
M0
20
x
0
0 4 8
AmériqueduNord 6 mai2004
+
+ +
+
++
+BaccalauréatSmai2004
MATHÉMATIQUES–SÉRIEES
Elémentsdeformulaire
Probabilités
ProbabilitéconditionnelledeBsachantA
P (B)estdéfinieparP(A ∩B)=P (B)×P(A).A A
CasoùAetBsontindépendants:P(A∩B)=P(A)×P(B).
Formuledesprobabilitéstotales
SilesévènementsB ,B