6
pages
Français
Documents
2008
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
6
pages
Français
Documents
2008
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
BaccalauréatAsieESjuin2008
Exercice1 5points
Communàtouslescandidats
Pour chaquequestion, une seule des trois propositions estexacte. Le candidatindiquera sur la copiele
numérodelaquestionetlalettrecorrespondantàlaréponsechoisie.Aucunejustificationn’estdeman-
dée.
Uneréponseexacterapporte1point;uneréponseinexacteenlève0,5point;l’absencederéponseestcomp-
tée0point.Siletotalestnégatif,lanoteestramenéeàzéro.
1. Unebaissede25%estcompenséeparunehausse,arrondieàl’unité,de:
a. 20% b. 25% c. 33%
2. Lapopulationd’unevilleaaugmentéde7%en2004,de5%en2005etde6%en2006.L’augmen-
tationdelapopulationdecettevillesurlapériode2004-2006est,arrondieàl’unitéprès,égaleà:
a. 17% b. 18% c. 19%
LesélèvesdedeuxclassesdeterminaleES(désignéesparTE1etTE2)sontrépartisselonleurspé-
cialité(quisontabrégéesenSES,LV,Math)delafaçonsuivante:
TE1 TE2 Total
SES 16 8 24
Spécialité LV 12 14 26
Math 6 10 16
Total 34 32 66
On interroge un élève au hasard. Les données précédentes sont à utiliser pour les trois questions
suivantes:
3. Laprobabilitéquel’élèveinterrogéappartienneàlaTE1estégaleà:
1 1 17
a. b. c.
66 34 33
4. La probabilité que l’élève interrogé suive l’enseignement de spécialité Math ou appartienne à la
TE1estégaleà:
2 25 1
a. b. c.
3 33 11
5. La probabilité que l’élève interrogé suive l’enseignement de spécialité Math sachant qu’il appar-
tientàlaTE1estégaleà:
1 1 3
a. b. c.
34 11 17
Exercice2 5points
Communàtouslescandidats
Onconsidèrelafonctionu définiesurl’intervalle]0;+∞[par
10−x
u(x)=
x
1. Calculerleslimitesdeu en0eten+∞.
2. Étudierlesvariationsdeu.
Onconsidèrelafonction f définiesurl’intervalle]0;+∞[par
u(x)f(x)=e .
3. Calculerleslimitesde f en0eten+∞.Quellesconséquencesgraphiquespeut-onendéduire?4. Établir,enjustifiant,letableaudevariationsde f.
5. Résoudrealgébriquementl’équation f(x)=1.
6. L’équation f(x)=−x admet-elleunesolution?Pourquoi?
Toutetentatived’explicationdeladémarcheoudelaméthodeutiliséeseravalorisée.
Exercice3 5points
Candidatsn’ayantpassuivil’enseignementdespécialité
Letableausuivantdonnel’évolutionduSMIChorairebruteneurosdepuis2001.
Date 1/07/2001 1/07/2002 1/07/2003 1/07/2004 1/07/2005 1/07/2006 1/07/2007
Rang:x 1 2 3 4 5 6 7i
Valeureneuros y 6,67 6,83 7,19 7,61 8,03 8,27 8,44i
¡ ¢
1. Représenter sur votre copie le nuage de points associé à la série x ; y dans un repère ortho-i i
gonal (1 cm représente 1 rang en abscisse et 5 cm représentent 1e en ordonnée faire débuter la
graduationà6surl’axedesordonnées).
2. Àl’aidedelacalculatrice,donneruneéquationdeladroitederégressionde y enx parlaméthode
−2desmoindrescarrés(arrondirlescoefficientsà10 près).
Tracercettedroitedanslerepèreprécédent.
3. Laformedunuagesuggèreunemodificationdel’évolutionduSMIChorairebrutàpartirdejuillet
2004.Pourx?4,onchoisitd’ajusterlenuagedepointsparunecourbeC d’équation
y=aln(x−3)+b
où a,et b sontdeuxréels.Déterminerlesréels a et b telsquelacourbeC passeparlespointsde
−2coordonnées(4;7,61)et(7;8,44)(arrondirlesréelsa etb à10 ).
TacerlacourbaC danslerepèreprécédent.
er4. Arthurestunjeunesalarié,rémunéréauSMIC.IlsouhaiteestimerlavaleurduSMICau1 juillet
2009.Quelest,parmilesmodèlesutilisésauxquestions2et3,celuiquiluiseraleplusfavorable?
Exercice3 5points
Candidatsayantsuivil’enseignementdespécialité
OnconsidèrelasurfaceS d’équation
z=y×ln(x),
où x appartientàl’intervalle[0,5;5]et y appartientl’intervalle[−3 ; 5].Cettesurface S estreprésentée
surl’annexecorrespondantàcetexercicequiestàrendreaveclacopie.
Lescinqquestionssontindépendantesl’unedel’autre.
1. OnnoteP lepland’équationx=3,5.Quelleestlanaturedel’intersectiondelasurfaceSetduplan
P ?
2. OndésigneparC l’intersectiondelasurfaceSaveclepland’équationy=2.Représenterlacourbe2
C dansunrepèreorthonormald’unité2cm.2
3. PlacersurlasurfaceS lepointAd’abscisse2etd’ordonnée4.Calculersacôte.
4. LirelescoordonnéesdupointBsituésurlasurfaceS.
5. OnconsidèrelasectionC delasurfaceS parlepland’équationz=1.
a. Calculerl’ordonnéedupointDd’abscisse4situésurlasectionC.Ondonneralavaleurexacte
−1puisunevaleurapprochéeà10 près.PlacerlepointDsurlasurfaceS.
BaccalauréatES 2 Asiejuin2008b. Arthur pense que la nature de la sectionC est un morceau de parabole. A-t-il raison? Pour-
quoi?
Exercice4 5points
Communàtouslescandidats
Uneentreprisefabriqueunequantitéx,compriseentre0et20,d’uncertainobjet.
Le coût total de production f, exprimé en euros, est représenté par la courbeC dans un repère d’ori-
gine O du graphique 1 fourni en annexe (à rendre avec la copie). La tangente à la courbeC au point B
d’abscisse14esttracéesurlemêmegraphique.
1. a. Quelestlecoûttotaldeproductionde10objets?
b. Quelle quantité maximale d’objets est-il possible de produire pour un coût total inférieur à
150e?
2. Le coût marginal g est donné sur l’intervalle ]0; 20] par la dérivée du coût total de production
′g(x)= f (x)pourtoutx appartenantàl’intervalle]0;20].
a. Enutilisantlegraphique1del’annexe,déterminerlavaleurducoûtmarginalpourx=14.
Comparerg(14)etg(19).
b. Quelle est, parmi les trois courbes proposées sur le graphique 2, celle qui représente le coût
marginal?Justifierlaréponse.
f(x)
3. Lecoûtmoyenh estdonnésurl’intervalle]0;20]parh(x)= .
x
a. Estimerh(5).
b. Surlegraphique1del’annexe,placerlepointQ d’abscisse5situésurlacourbeC,puistracer
ladroite OQ .( )
f(5)
Uneexpressionducoefficientdirecteurdeladroite(OQ)est .Justifiercetteexpression.
5
c. Placerlepoint A surlacourbeC telqueladroite(OA)soittangenteàC.Onappelle a l’abs-
cissedupoint A.
d. Conjecturerlesvariationsdeh surl’intervalle]0;20].
Toutetentatived’explicationdeladémarcheoudelaméthodeutiliséeseravalorisée.
BaccalauréatES 3 Asiejuin2008Annexeàrendreaveclacopie
Graphique1
160
C
140
120 60
100
B
6
80
60
40
20
O-2 2 4 6 8 10 12 14 16 18 20
BaccalauréatES 4 Asiejuin2008Annexeàrendreaveclacopie
Graphique2
22
C1
21
20
20
19
1818
17
16
16
15
14
14
13
1212
11
10
C10 2
9
88
7
6
6
5
4
4
3
22
1 C3
0
-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22O-2 2 4 6 8 10 12 14 16 18 20
-2
-2
BaccalauréatES 5 Asiejuin2008Exercicedespécialité
Annexedeexercice3àrendreaveclacopie
8
7
6
B
5
4
3
2
1
0
-1
-2
-3
-4
-5
55
4 43
2 3
1
0 2
-1
1-2
-3
BaccalauréatES 6 Asiejuin2008
b