Pulse propagation and time reversal in random waveguides

icon

33

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

33

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée
Pulse propagation and time reversal in random waveguides Context: time-reversal experiments in underwater acoustics. Experimental observations: - robust spatial refocusing - diffraction-limited focal spot [1] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, Phase conjugation in the ocean, experimental demonstration of an acoustic time-reversal mirror, J. Acoust. Soc. Am. 103 (1998), 25-40. [2] H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, Iterative time reversal in the ocean, J. Acoust. Soc. Am. 105 (1999), 3176-3184. Analysis of the mechanisms responsible for statistically stable time reversal.

  • iterative time

  • time harmonic

  • waveguide cross-section

  • perturbed wave

  • refocusing - diffraction-limited focal

  • source source


Voir icon arrow

Publié par

Nombre de lectures

20

Langue

English

Pulsepropagationandtimereversalinrandomwaveguides

Context:time-reversalexperimentsinunderwateracoustics.

Experimentalobservations:
-robustspatialrefocusing
-diffraction-limitedfocalspot

[1]W.A.Kuperman,W.S.Hodgkiss,H.C.Song,T.Akal,C.Ferla,andD.R.

Jackson,Phaseconjugationintheocean,experimentaldemonstrationofanacoustic

time-reversalmirror,J.Acoust.Soc.Am.
103
(1998),25-40.

[2]H.C.Song,W.A.Kuperman,andW.S.Hodgkiss,Iterativetimereversalinthe

ocean,J.Acoust.Soc.Am.
105
(1999),3176-3184.

Analysisofthemechanismsresponsibleforstatisticallystabletimereversal.

Perfectacousticwaveguide

waveguidecross-section
2R⊂D

D

x

z

up∂1∂ρ
¯+

p
=
F
,
¯+

u
=0
,
for
x
∈D
and
z

R
.
t∂t∂Kp
istheacousticpressure,
u
istheacousticvelocity.
ρ
¯isthedensityofthemedium,
K
¯isthebulkmodulus.
Thesourceismodeledbytheforcingterm
F
(
t,
r
).

Waveequationwiththesoundspeed
c
¯=
K
¯

¯:
p2p∂1Δ
p

c
¯
2
∂t
2
=

.
F
for
x
∈D
and
z

R
.

Dirichletboundaryconditions

p
(
t,
x
,z
)=0for
x


D
and
z

R
.

Timeharmonicwaveequation
k
=
ω/c
¯


z
2
p
ˆ(
ω,
x
,z
)+Δ

p
ˆ(
ω,
x
,z
)+
k
2
(
ω
)
p
ˆ(
ω,
x
,z
)=0

SpectrumofΔ

withDirichletBC=infinitenumberofdiscreteeigenvalues


Δ

φ
j
(
x
)=
λ
j
φ
j
(
x
)
,
x
∈D

j
(
x
)=0
,
x


D
,
for
j
=1
,
2
,...

Numberofpropagatingmodes
N
(
ω
):

λ
N
(
ω
)

k
(
ω
)

N
(
ω
)+1
,

Propagatingmodes1

j

N
(
ω
):
p
ˆ
j
(
ω,
x
,z
)=
φ
j
(
x
)
e
±

j
(
ω
)
z

j
(
ω
)=
k
2
p

Evanescentmodes
j>N
(
ω
):

(ω)−λj.q
ˆ
j
(
ω,
x
,z
)=
φ
j
(
x
)
e
±
β
j
(
ω
)
z

j
(
ω
)=
λ
j

k
2
(
ω
)
.
p

=)ω(jbˆ−=)ω(jaˆ,)z()0,∞−(1)z()∞,0(1)x(jφzjβ−e)ω(jβ)ω(jcˆ∞+)x(jφzjβie)ω(jβ)ω(jaˆN=)z,x,ω(pExcitationConditionsforaSource

ˆSourcelocalizedintheplane
z
=0:

.F
(
t,
x
,z
)=
f
(
t
)
δ
(
x

z#"XXj
=1
j
=
N
+1
pp∞N#"+
Xp
b
ˆ
j
(
ω
)
e


j
z
φ
j
(
x
)+
Xp
d
ˆ
j
(
ω
)
e
β
j
z
φ
j
(
x
)
j
=1
β
j
(
ω
)
j
=
N
+1
β
j
(
ω
)

ewhti

)p
β
j
(
ω
)
f
ˆ(
ω
)
φ
j
(
x
0
)
,
2c
ˆ
j
(
ω
)=

d
ˆ
j
(
ω
)=

β
2
j
(
ω
)
f
ˆ(
ω
)
φ
j
(
x
0
)
.
p

zFor
k
(
ω
)
z

1:

()ω(NXj
=1
β
j
(
ω
)
p
ˆ(
ω,
x
,z
)=
p
a
ˆ
j
(
ω
)
φ
j
(
x
)
e

j
(
ω
)
z

δ)0x
Perturbedwaveguide:Timeharmonicapproach

xpind/2
02/d-

prtL /
e
2
z

ρ
(
r
)
∂∂
u
t
+

p
=
F
,
K
1(
r
)
∂∂tp
+

u
=0
,

8K=1
<
1
(1+
ε
ν
(
x
,z
))for
x
∈D
,z

[0
,
L/ε
2
]
KK
(
x
,z
)
:
1
for
x
∈D
,z

(
−∞
,
0)

(
L/ε
2
,

)
ρ
(
x
,z
)=
ρ
¯
∈D∈−∞∞
PerturbedwaveequationwithDirichletboundaryconditions:

forx,z(,)2Δ
p
ˆ(
ω,
x
,z
)+
k
(1+
ε
ν
(
x
,z
))
p
ˆ(
ω,
x
,z
)=0
.

Wavemodeexpansions:

φj(x)qˆj(z)∞Np
ˆ(
x
,z
)=
φ
j
(
x
)
p
ˆ
j
(
z
)+
XXj
=1
j
=
N
+
Right-goingandleft-goingmodeamplitudes
a
ˆ
j
(
z
)and
b
ˆ
j
(
z
):

j1”“”“zdpβp
ˆ
j
=
p
1
a
ˆ
j
e

j
z
+
b
ˆ
j
e


j
z
,dp
ˆ=

j
a
ˆ
j
e

j
z

b
ˆ
j
e


j
z
,
j

Nj≤

Coupledmodeequations

Neglectevanescentmodes.

ˆlie(βl−βj)z+ˆbl−e(iβl+βj)zCoupledmodeequationsfor
j

N
:
dz
2
1

l

N
β
j
β
l
da
ˆ
j
=
iεk
2
X
C
p
jl
(
z
)

a

lldz
2
1

l

N
β
j
β
l
db
ˆ
j
=

iεk
2
X
C
p
jl
(
z
)

a
ˆ
e
i
(
β
l
+
β
j
)
z
+
b
ˆ
e
i
(
β
j

β
l
)
z

C
jl
(
z
)=
φ
j
(
x
)
φ
l
(
x
)
ν
(
x
,z
)
d
x
ZDBoundaryconditions:

hwere

Rescaling:

La
ˆ
j
(0)=
a
ˆ
j,
0
,b
ˆ
j
(
2
)=0
ε

zzεεa
ˆ
j
(
z
)=
a
ˆ
j
(
2
)
,b
ˆ
j
(
z
)=
b
ˆ
j
(
2
)
εε֒

Diffusionapproximationtheorem.

Theforwardscatteringapproximation

Diffusion-approximation=

multi-dimensionaldiffusionprocess.
Couplingcoefficientsbetweenleftandright-goingmodes:

EC[jl(0)Cjl(z)]cosβ(j(ω)+βl(ω))z)d∞Z0Couplingcoefficientsbetweenright-goingmodes:

EC[jl(0)Cjl(z)]cosβ(j(ω)−βl(ω))z)dzz,,,j,jll==,1,1
,N
(
ω
)
.

,N(ω).∞Z0Wecanneglecttheleft-going(backward)propagatingmodesifthefirsttypeof
coefficientsarenegligiblecomparedtothesecondones.

erudcedssytem:εda
ˆ=1
M
(
z
)
a
ˆ
ε
(
z
)
2εεzd2ββ2M
jl
(
z
)=
p
ikC
jl
(
z
)
e
i
(
β
l

β
j
)
z
lj

(ω,z))j=1,N,covnegreniidstirubtoinasεThemodeamplitudes(
a
ˆ


0toa
diffusionprocess
(
a
ˆ
j
(
ω,z
))
j
=1
,

,N
whoseinfinitesimalgeneratoris

L
=41Γ
j
(
lc
)
(
ω
)
A
jl
A
jl
+
A
jl
A
jl
+21Γ
j
(
l
1)
(
ω
)
A
jj
A
ll<

Voir icon more
Alternate Text