CONSTRUCTIBLE MOTIVIC FUNCTIONS AND MOTIVIC INTEGRATION by Raf Cluckers & Franc¸ois Loeser 1. Introduction 1.1. In this paper, intended to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [24], motivic integration developed quickly and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual varieties, or motives. But, classicaly, not only numbers are defined using integrals, but also interesting classes of functions. The previous constructions of motivic integration were all quite geometric, and it was quite unclear how they could be generalized to handle integrals depending on parameters. The new approach we present here, based on cell decomposition, allows us to develop a very general theory of motivic integration taking parameters in account. More precisely, we define a natural class of functions - constructible motivic functions - which is stable under integration. The basic idea underlying our approach is to construct more generally push- forward morphisms f! which are functorial - they satisfy (f ? g)! = f! ? g! - so that performing motivic integration corresponds to taking the push-forward to the point. This strategy has many technical advantages. In essence, it allows to reduce the construction of f! to the case of closed immersions and projections, and in the latter case we can perform induction on the relative dimension, the basic case being that of relative dimension 1, for which
- subassignments
- construction being
- running over
- constructible motivic
- motivic integration
- positive characteristic
- forward morphism
- generally push- forward morphisms
- any definable
- push-forward