Convex Structure Learning in Log Linear Models: Beyond Pairwise Potentials

icon

140

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

140

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials Mark Schmidt and Kevin Murphy Department of Computer Science University of British Columbia May 15, 2010

  • beyond pairwise

  • introduction higher-order

  • gaussian graphical

  • parameters wi

  • structure learning


Voir icon arrow

Publié par

Nombre de lectures

49

Poids de l'ouvrage

3 Mo

Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials
Mark Schmidt and Kevin Murphy
Department of Computer Science University of British Columbia
May 15, 2010
Outline
1
2
3
4
5
Introduction Higher-Order Log-Linear Models Optimization Experiments Conclusion
Introduction Structure Learning Our Contribution
Higher-Order
Optimization
Experiments
Conclusion
with
Log-Linear
Structure Learning with`1-Regularization Our Contribution
`1-Regularization
Models
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Structure Learning with`1-Regularization Our Contribution
Introduction Higher-Order Log-Linear Models Optimization Experiments Conclusion Structure Learning with`1noazit-lariRegu
Several authors have recently examined parameter estimation in graphical models with`1-regularization. Regularization and structure learning in a convex framework. First works looked at Gaussian graphical models. Recent works considerlog-linear modelsof discrete data.
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear ModelsStructure Learning with`1-Regularization ribution OEpxtpiemriizmaetinotsnOur Cont Conclusion Structure Learning with`1-onzatilariRegu
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear Models`1-Regularization OEptpiemriizmateinotnsSOturrucCtounrteriLbeuatrinoinng with x Conclusion Structure Learning with`1guRerila-noazit
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Introduction Higher-Order Log-Linear Models OpxtpiemriizmateinotsnSOturrucCtuornteriLbeuatrinoinng with`1-Regularization E Conclusion Structure Learning with`1nioatizaruleg-R
For example, assume we have apairwiseundirected graphical model, p(x),Z1Yφi(xi)Yφij(xi,xj), i j>i with node parameterswiand edge parameterswij.
Assume thatwij=0is equivalent to removing the edge (i,j).
We can usegroup`1-regularizationfor simultaneous parameter estimation and structure learning:
n mwinXlogp(xi|w) +λX X||wij||2, i=1i j>i
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-OrderLog-LiOnepatirmMizoatdieolnsStructure Learning with Our Contribution Experiments Conclusion Structure Learning with`1-eRugaliraziton
A list of papers on this topic (incomplete):
[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&Bu¨hlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-Order Log-Linear Models OptimizationSOturrucCtuornteriLbeuatrinoinng with Experiments Conclusion Structure Learning with`1oinularizat-Reg
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&B¨uhlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-OrderLog-LinearModeolnsg with Structure Learnin OEpxtpiemriizmaetintsOur Contribution Conclusion Structure Learning with`1on-ugeRiralitaz
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004],[Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,2006],[Leeetal.,2006],[Meinshausen&B¨uhlmann,2006], [Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
`1-Regularization
Introduction Higher-Order Log-Linear Models OptimizationSOturrucCtuornetriLbeuatrinoinng with Experiments Conclusion Structure Learning with`1tazinoigeR-ralu
Many of these papers have made thepairwiseassumption:
[Li & Yang, 2004],[Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al., 2006],[Lee et al., 2006][,nieMuahs&neslmanB¨uh06],n,20 [Wainwright et al., 2006]et al., 2007], [Schmidt et al., 2007],, [Dahinden [Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidtetal.,2008],[Fan&Feng,2009],[H¨oling&Tibshirani,2009], [Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al., 2010].
Mark Schmidt and Kevin Murphy
Convex Structure Learning in Log-Linear Models
Voir icon more
Alternate Text