CHAPITRE II Interpolation Les espaces de Banach constituent le cadre privilegie de la majeure partie des analystes ; en particulier, la norme permet de quantifier la “taille” des elements, et de proceder a des estimations. L'interpolation entre espaces de Banach fait partie de la trousse a outils developpee pour faciliter les calculs dans ce contexte. Imaginee pour la premiere fois par M. Riesz en 1926, la theorie de l'interpolation a pris son essor en 1939, quand Thorin d'une part, Marcinkiewicz d'autre part, mirent au point les demonstrations des deux theoremes emblematiques de l'interpolation ; ces theoremes allaient ouvrir la voie, l'un a l'interpolation complexe, et l'autre a l'interpolation reelle, methodes developpees principalement dans les annees 50 et 60 par Stein, Zygmund, Calderon, Lions, Peetre, et qui font aujourd'hui partie du bagage courant des analystes. Sommaire II-1. Introduction 33 1.1. Motivations 33 1.2. Definitions 34 II-2. Interpolation complexe 36 2.1. Theoreme de Riesz-Thorin 36 2.2. Interpolation complexe abstraite 41 2.3. Extrait du catalogue d'interpolation complexe 43 2.4. Exemples d'identification d'espace interpole 44 2.5. Applications 44 II-3. Interpolation reelle 45 3.1. Theoreme de Marcinkiewicz 45 3.2. Interpolation reelle abstraite 47 3.3. Extrait du catalogue d'interpolation reelle 51 3.4. Un exemple d'identification d'espace interpole 52 3.5.
- representation de la norme par dualite
- interpolation reelle abstraite
- dualite entre espaces lp
- familles d'espaces de banach dependant
- interpolation
- theoreme de riesz-thorin
- lineaire continue
- interpolation complexe