Niveau: Supérieur, Licence, Bac+1
Universite de Nice Sophia-Antipolis L1 - MP Algebre 10-11 semestre 1 3 Matrices a coefficients dans un corps Soit K un corps. 3.1 Definitions Definition 3.1.1 Soit n et p deux entiers naturels. Une matrice n ? p a coefficients dans K est la donnee d'une famille (ai,j)1≤i≤n,1≤j≤p de np elements de K . Elle est representee par le tableau a n lignes et p colonnes : M = ? ? ? ? ? ? a1,1 . . . a1,p a2,1 . . . a2,p ... . . . ... an,1 . . . an,p ? ? ? ? ? ? . l'element ai,j de K est appele le terme de la i-eme ligne et j-eme colonne. On dit aussi que la matrice M est une matrice a n lignes et p colonnes. Notation 3.1.2 On note Mn,p(K) l'ensemble des matrices a n lignes et p colonnes. Soit a1, . . . , ap ? K, la matrice (a1a2 . . . ap) ?M1,p(K) est appelee matrice ligne. Soit a1, . . . , an ? K, la matrice : ? ? ? ? a1 ... an ? ? ? ? ?Mn,1(K) est appelee matrice colonne.
- combinaison lineaire des matrices m1
- general de la matrice mn
- egalites entre matrices
- universite de nice - sophia-antipolis
- ?mn