GAGLIARDO NIRENBERG INEQUALITIES ON MANIFOLDS

icon

14

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

14

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

GAGLIARDO-NIRENBERG INEQUALITIES ON MANIFOLDS NADINE BADR Abstract. We prove Gagliardo-Nirenberg inequalities on some classes of manifolds, Lie groups and graphs. Contents 1. Introduction 1 2. Preliminaries 5 2.1. Besov and Morrey spaces 5 2.2. Sobolev spaces on Riemannian manifolds 6 2.3. Doubling property and Poincare inequalities 7 3. Ledoux's and Sobolev inequalities 8 3.1. The classical Sobolev inequality 9 3.2. Sobolev inequalities for Lorentz spaces 10 4. Proof of Theorem 1.1, 1.6, 1.8 and 1.9 11 References 13 1. Introduction Cohen-Meyer-Oru [5], Cohen-Devore-Petrushev-Xu [4], proved the following Gagliardo- Nirenberg type inequality (1.1) ?f?1? ≤ C? |?f | ? n?1 n 1 ?f? 1 n B?(n?1)∞,∞ for all f ? W 11 (R n) (1? = nn?1). The proof of (1.1) is involved and based on wavelet decompositions, weak type (1,1) estimates and interpolation results. Using a simple method relying on weak type estimates and pseudo-Poincare in- equalities, Ledoux [14] obtained the following extension of (1.1). He proved that for 1 ≤ p < l <∞ and for every f ? W 1p (R n) (1.2) ?f?l ≤ C? |?f | ? ? p?f? 1?? B ? ??1 ∞,∞ where ? = pl and C > 0 only depends on l, p and n.

  • cohen-devore-petrushev-xu

  • gagliardo-nirenberg inequalities

  • haar measure

  • riemannian manifold

  • lie group equipped

  • dµ ≤

  • ledoux

  • linear elliptic

  • lie group

  • inequality


Voir icon arrow

Publié par

Nombre de lectures

17

Langue

English

GAGLIARDO-NIRENBERG INEQUALITIES ON MANIFOLDS
NADINE BADR Abstract. We prove Gagliardo-Nirenberg inequalities on some classes of manifolds, Lie groups and graphs.
Contents
1. Introduction 2. Preliminaries 2.1. Besov and Morrey spaces 2.2. Sobolev spaces on Riemannian manifolds 2.3.DoublingpropertyandPoincare´inequalities 3. Ledoux’s and Sobolev inequalities 3.1. The classical Sobolev inequality 3.2. Sobolev inequalities for Lorentz spaces 4. Proof of Theorem 1.1, 1.6, 1.8 and 1.9 References
1 5 5 6 7 8 9 10 11 13
1. Introduction Cohen-Meyer-Oru [5], Cohen-Devore-Petrushev-Xu [4], proved the following Gagliardo-Nirenberg type inequality n 1 1 (1.1) k f k 1 C k |r f | k 1 n k f k n B ( ,n ∞− 1) for all f W 11 ( R n ) (1 = n n 1 ). The proof of (1.1) is involved and based on wavelet decompositions, weak type (1,1) estimates and interpolation results. Usingasimplemethodrelyingonweaktypeestimatesandpseudo-Poincare´in-equalities, Ledoux [14] obtained the following extension of (1.1). He proved that for 1 p < l < and for every f W p 1 ( R n ) (1.2 θ k f k 1 θ θ ) k f k l C k |r f | k pB θ 1 , where θ = lp and C > 0 only depends on l, p and n . In the same paper, he extended (1.2) to the case of Riemannian manifolds. If p = 2 he observed that (1.2) holds without any assumption on M . If p 6 = 2 he assumed that the Ricci curvature is non-negative and obtained (1.2) with C > 0 only depending on l, p when 1 p 2 and on l, p and n when 2 < p < . 2000 Mathematics Subject Classification. 46E30, 26D10, 46B70. Key words and phrases. Gagliardo, Nirenberg, Symmetrization, Sobolev spaces, Interpolation.
1
Voir icon more
Alternate Text