Immeubles de Kac^Moody hyperboliques, groupes non isomorphes de me“ me immeuble (Hyperbolic Kac^Moody Buildings Nonisomorphic Groups with the Same Building) BERTRAND RE? MY Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel. e-mail: (Received: 6 January 2000; in ¢nal form: 28 November 2000) Abstract. We ¢rst remark that Kac^Moody groups enable us to produce hyperbolic buildings ^ automatically endowed with nonuniform lattices. The main result then deals with groups whose buildings are trees or two-dimensional hyperbolic. It is a factorization theorem for abstract isomorphisms. It shows the existence of nonisomorphic Kac^Moody groups with the same associated isomorphism class of buildings. Mathematics Subject Classi¢cations (2000). 20E42; 51E24; 20B27; 20E08; 20G40. Key words. Kac^Moody group, group combinatorics, twin buildings, hyperbolic building, tree, lattice Introduction Des progre' s re? cents en the? orie ge? ome? trique des groupes ont rendu envisageable d'e? tudier de nouveaux specimens de groupes discrets et de ge? ome? tries, en les con- frontant aux situations plus classiques des espaces syme? triques ou des immeubles de Bruhat^Tits. Il est de? sormais re? aliste de travailler sur des immeubles hyper- boliques (ou' les appartements sont des pavages d'espaces hyperboliques), ou sur des (produits d') arbres de valence quelconque.
- de? ¢nition
- union
- choix e?
- re? seaux
- pavage de l'espace ambiant
- ge? ome?
- trique