maths spé es

icon

5

pages

icon

Français

icon

Documents

2016

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

5

pages

icon

Français

icon

Ebook

2016

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

BACCALAURÉAT GÉNÉRAL Session 2016 MATHÉMATIQUESȂSérie ES ENSEIGNEMENT DE SPÉCIALITÉ SUJET ± ǯ± : 3 heuresȂcoefficient : 7 ǯ est autorisé. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ǡ ǯ ± ± Ǥ Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront p ǯ ± Ǥ ǯ ǡ ǯ ± ǯ ȋ ± ±ȌǤ Le sujet comporte 5 pages, y compris celle-ci. 1 16MAESSMLR2 EXERCICE1 Ȃ 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses convient. Indiquer sur la copie le numéro de la question et la lettre de la réponse choisie sans justifier le choix effectué. ± ͷ Ǥ ± ǡ ± ǯ ± ǯ ° Ǥ 1. Un organisme de formation désire estimer la proportion de stagiaires satisfaits de la ­ ǯ ± ʹͲͳ͵Ǥ ǡ ± représentatif de 300 stagiaires. On constate que 225 sont satisfaits.
Voir icon arrow

Publié par

Publié le

22 juin 2016

Nombre de lectures

17 665

Langue

Français

BACCALAURÉAT GÉNÉRAL
Session 2016
MATHÉMATIQUESSérie ES
ENSEIGNEMENT DE SPÉCIALITÉ
SUJET Durée de l’épreuve: 3 heurescoefficient : 7 L’usage de la calculatriceest autorisé. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l’appréciation des copies.Le candidat s’assurera que le sujet est complet, qu’il correspond bien à sa série et à son choix d’enseignement ȋobligatoire ou spécialitéȌ.Le sujet comporte 5 pages, y compris celle-ci.
1
16MAESSMLR2
EXERCICE14points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses convient. Indiquer sur la copie le numéro de la question et la lettre de la réponse choisie sans justifier le choix effectué. Une bonne réponse rapporte 1 point. Une réponse fausse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.1.Un organisme de formation désire estimer la proportion de stagiaires satisfaits de la formation reçue au cours de l’année ʹͲͳ͵. Pour cela, il interroge un échantillonreprésentatif de 300 stagiaires. On constate que 225 sont satisfaits. Alors, un intervalle de confiance au niveau de confiance 0,95 de la proportion de stagiaires satisfaits de la formation reçue au cours de l’année ʹͲͳ͵ est: (a)Ͳ,͹ͳ͵; Ͳ,͹͹ͳ (b)Ͳ,͸ͻʹ; Ͳ,ͺͲͺ(c)Ͳ,͹ͷͶ; Ͳ,ͺͳ͵(d)Ͳ,͹Ͳͳ; Ͳ,͹ͻͻ2.En suivant la loi uniforme, onchoisit un nombre au hasard dans l’intervalleͶ; ͳͳ. La probabilité que ce nombre soit inférieur à 10 est : ૟ ૚૙ ૚૙ ૟ (a) (b)(c)(d)૚૚ ૠ ૚૚ ૠ −ଶ+ଷ 3.On considère la fonctionfdéfinie surRpare=ͳ. La fonctionest dérivable surRet sa fonction dérivée�’est donnée par : −ଶ+ଷ  −ଶ+ଷ (a)eʹ=(b)e= −ଶ+ଷ  −ଶ+ଷ (c) ͵ሻe� ሺ�ሻ =ሺʹ� (d)=ሺʹ�  ͳሻe� ሺ�ሻ 4.On considère une fonction définie et dérivable surRque sa fonction telle dérivée�′ soit aussi dérivable surR. La courbe ci-contre représente la fonction�′′. On peut alors affirmer que : (a)fest convexe surʹ; ʹ. (b)fest concave surʹ; ʹ.(c)La courbe représentative defsur(d)�′est croissante surʹ; ʹ.ʹ; ʹadmet un point d’inflexion.2 16MAESSMLR2
EXERCICE25points Afin de se préparer à courir des marathons, Hugo aimerait effectuer quotidiennement un footing à er compter du 1 janvier 2014. On admet que : Si Hugo court un jour donné, la probabilité qu’ilne coure pas le lendemain est de 0,2 ; s’ilne court pas un jourdonné, la probabilité qu’ilne coure pas le lendemain est de 0,4. On note Cl’état« Hugo court » et Rl’état« Hugo ne court pas ». Pour tout entier natureln, on note : la probabilité de l’événement «Hugo court leͳ-ième jour » ; la probabilité de l’événement «Hugo ne court pas leͳ-ième jour » ; � � la matrice correspondant à l’état probabiliste leͳ-ième jour.er Le 1 janvier 2014, motivé, le jeune homme court. On a donc :� =ሺ� � ሻ =ሺͳ Ͳሻ.଴ ଴ 1.Traduire les données de l’énoncé par un graphe probabilistede sommets C et R. 2.Écrirela matrice de transition M de ce graphe en respectant l’ordre alphabétique des sommets.
Ͳ,͹ͷͲͲͳ͸ Ͳ,ʹͶͻͻͺͶ 6 3.On donne� =ቀ . Ͳ,͹Ͷͻͻͷʹ Ͳ,ʹͷͲͲͶͺ e Quel calcul matriciel permet de déterminer la probabilitéqu’Hugocoure le 7 jour ? 6 -2 Déterminer une valeur approchée à 10 près de. 6
4.a.Exprimeren fonction de. +ଵ  b.Montrer que, pour tout entier naturel, Ͳ,͸� =Ͳ,ʹ� . +ଵ  ) définie par� =�  Ͳ,͹ 5.Pour tout entier naturel, on considère la suite (  ͷ. a.Montrer que la suite () est une suite géométrique de raison 0,2. Préciser le premier terme. b.Exprimeren fonction de. Déterminer la limite de la suite (). c.Justifier que, pour tout entier naturel, Ͳ,ʹͷ × Ͳ,ʹ � =Ͳ,͹ͷ .d.Que peut-on conjecturer concernant la probabilité qu’Hugo courele 29 décembre 2014 ? e.Conjecturer alors l’état stable de ce graphe.Comment valider votre conjecture ?
3
16MAESSMLR2
EXERCICE35pointsUn téléphone portable contient en mémoire 3 200 chansons archivées par catégories : rock, techno, rap, reggae... dont certaines sont interprétées en français. Parmi toutes les chansons enregistrées, 960 sont classées dans la catégorie rock. Une des fonctionnalités du téléphone permet d’écouter de la musiqlectureue en mode « aléatoire » : les chansons écoutées sont choisies au hasard et de façon équiprobable parmi l’ensemble du répertoire.Au cours de son footing hebdomadaire, le propriétaire du téléphone écoute une chanson grâce à ce mode de lecture. On note : R l’événement: « la chanson écoutée est une chanson de la catégorie rock » ; F l’événement: « la chanson écoutée est interprétée en français ». LesPARTIESA et B sont indépendantes. PARTIEA1.Calculer�ሺRሻ, la probabilité de l’événement R.2.35% des chansons de la catégorie rock sont interprétées en français ; traduire cette donnée en utilisant les événements R et F. 3.Calculer la probabilité que la chanson écoutée soit une chanson de la catégorie rock et qu’elle soit interprétée en français.4.Parmi toutes les chansons enregistrées 38,5% sont interprétées en français. ̅ Montrer queͺ=Ͳ,ʹRF. 5.En déduire̅ሺFሻet exprimer par une phrase ce que signifie ce résultat. R PARTIEBLes résultats de cette partie seront arrondis au millième. Le propriétaire dutéléphone écoute régulièrement de la musique à l’aide de son téléphone portable. On appelle X la variable aléatoire qui, à chaque écoute de musique, associe la durée (en minutes) correspondante ;on admet que X suit la loi normale d’espérance͵=Ͳet d’écart-type=ͳͲ. Le propriétaire écoute de la musique. 1.Quelle est la probabilité que la durée de cette écoute soit comprise entre 15 et 45 minutes ? 2.Quelle est la probabilité que cette écoute dure plus d’une heure?
4
16MAESSMLR2
EXERCICE46points La courbe (C) ci-dessous représente, dans un repère orthonormé, une fonction définie et dérivable surͲ,ͷ; ͸.Les points A(1; ͵) et B d’abscisse ͳ,5 sont sur la courbe(C). Les tangentes à la courbe (C) aux points A et B sont aussi représentées en pointillés sur ce graphique, la tangente au point B est horizontale. On note�’la fonction dérivée de.
LesPARTIESAetBsont indépendantes.PARTIEA:ÉTUDE GRAPHIQUE1.Déterminer�’ሺͳ,ͷሻ.2.tangente à la courbe (C) au point A passe par le point de coordonnées (0 ; 2). DéterminerLa une équation de cette tangente. 3.Donner un encadrement del’aire, en unités d’aire età l’unité près, du domaine compris entre la courbe (C), l’axe des abscisses et les droites d’équationͳ=et.ʹ=4.Déterminer la convexité de la fonctionsurͲ,ͷ; ͸.Argumenter la réponse. PARTIEB:ÉTUDE ANALYTIQUEOn admet que la fonctionest définie surͲ,ͷ; ͸parͷnl͵ʹ=. −ଶ+ଷ 1.Pour tout réelde[Ͳ,ͷ; ͸],calculer�’ሺ�ሻet montrer que=� ሺ�ሻ . 2.Étudier le signe de�’surͲ,ͷ; ͸puis dresser le tableau de variation defsur [0,5 ; 6]. 3.Montrer que l’équationͲ=admet exactementune solution αsurͲ,ͷ; ͸. -2 Donnerune valeur approchée de α à ͳͲprès.
4.En déduire le tableau de signe desurͲ,ͷ; ͸.5.On considère la fonctiondéfinie surͲ,ͷ; ͸par ʹ�  ͵�lnሺ�ሻ�ሺ�ሻ =� . a.Montrer queest une primitive desurͲ,ͷ; ͸.b.En déduire l’aireexacte,en unités d’aire, du domaine compris entre la courbe (C), l’axe des abscisses et lesdroites d’équationͳ= et=ʹ. En donner ensuite une valeur arrondie au dixième. 5 16MAESSMLR2
Voir icon more
Alternate Text