GEOMETRICAL ASPECTS OF OPTIMAL TRANSPORT

icon

132

pages

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

132

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

GEOMETRICAL ASPECTS OF OPTIMAL TRANSPORT Ischia, June 2010 Cedric Villani ENS Lyon & Institut Henri Poincare

  • analytic formulation

  • reference text

  • interplay between hard

  • optimal transportation

  • monge–kantorovich problem

  • geometrical aspect

  • push-forward


Voir icon arrow

Publié par

Nombre de lectures

23

GEOMETRICALASPECTS
OFOPTIMALTRANSPORT
Ischia, June 2010
C´edric Villani
ENS Lyon
& Institut Henri Poincar´eMAINTHEME
Interplay between hard/soft, and smooth/nonsmooth,
analysis/geometry
in relation with optimal transport
References
• Topics in Optimal Transportation [TOT] (AMS,
2003): Introduction
• Optimal transport, old and new [oldnew] (Springer,
2008): Reference text, more probabilistic & geometricPRELIMINARY: Push-forward, or change of variables
(dx), ν(dy) two (probability) measures
y =T(x) measurable
−1
Def: T =ν if ∀B, [T (B)] =ν[B]
#
Z Z
Equivalently: ∀ϕ, ϕ◦Td = ϕd(T )
#
Probabilistic formulation
law(U) =, law(V) =ν, V =T(U)
Analytic formulation
n
InR , T (f(x)dx) =g(y)dy, if T is 1-to-1, yields
#
f(x) =g(T(x))|det(dT)(x)|MONGE–KANTOROVICH PROBLEMI. BASIC THEORY OF OPTIMAL
TRANSPORT
• The modern core of the Monge–Kantorovich theory,
built from the eighties to now
• Simplified statements
• Reference: [oldnew, Chap. 4, 5, 10]The Kantorovich problem (Kantorovich, 1942)
• X,Y two Polish (= metric separable complete) spaces
• ∈P(X), ν ∈P(Y)
1 1
• c∈C(X ×Y;R), c≥ c∈L ()+L (ν)
n o
Π(;ν) = π∈P(X ×Y); marginals of π are and ν
(∀h,
R R R R
h(x)π(dxdy) = hd; h(y)π(dxdy) = hdν)
Z
(K) inf c(x,y)π(dxdy)
π∈Π(;ν)
Prop: Infimum achieved by compactness of Π(;ν)
In the sequel, assume infimum is finiteProbabilistic version
X and Y two given random variables (= with given laws)
(K’) inf Ec(X,Y)
(Infimum over all couplings of (X,Y))Engineer’s interpretation
π(dxdy)
T
y
x
y ν
x

remblais
d´eblais
Given the initial and final distributions, transport
matter at lowest possible costThe Monge problem (Monge, 1781)
Assume π = (Id,T) =(dx)δ
# y=T(x)
−→ belongs to Π(;ν) iff T =ν
#
=⇒ the Kantorovich problem becomes
Z
(M) inf c(x,T(x))(dx) = inf Ec(X,T(X))
T =ν
#
• Interpretation: Don’t split mass! Y =T(X)
• No compactness =⇒ not clear if infimum achieved

Voir icon more
Alternate Text