Monotonicity Conditions in Convergence of Trigonometric Series , livre ebook

icon

264

pages

icon

English

icon

Ebooks

2024

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

264

pages

icon

English

icon

Ebooks

2024

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

This book provides a comprehensive survey and investigation into the monotonicity conditions applied to the coefficients of trigonometric (or Fourier) series, exploring how these conditions influence various convergence properties, along with related topics on positivity and monotonicity. Highlighting recent breakthroughs, the book offers a systematic review of the history and development of this area, focusing on current ideas, methods, and techniques to equip readers for future advancements.

Designed to be both systematic and original, the book serves as an accessible resource for mathematicians and students in analysis. With its self-contained approach, it requires only a basic knowledge of analysis, making it suitable as an advanced textbook for graduate students or a reference for researchers interested in this field.



Contents

Preface

Acknowledgements

Chapter 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Sets of Monotone Sequence and Various Generalizations. . . . . . . . . . . . . . . .10

1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 History and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Relationships among Sets of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

1.4.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 2 Uniform Convergence of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Classic Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Development: MVBV Concept in Positive Sense . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Further Discussion: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Breakthrough: MVBV Concept in Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

2.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3 L1-Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 History and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Further Development: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Mean Value Bounded Variation: In Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 L1-Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Convexity of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

3.6.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 4 Lp-Integrability of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Lp-Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Lp-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Lp-Integrability for Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 A Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 5 Fourier Coefficients and Best Approximation. . . . . . . . . . . . . . . . . . . . . .123

5.1 Classical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

5.2 A Generalization to Strong Mean Value Bounded Variation . . . . . . . . . . . 124

5.3 Approximation by Fourier Sums with Strong Monotone Coefficients . . . 138

5.3.1 Strong Monotonicity and Fourier Approximation. . . . . . . . . . . . . . . . . . . .138

5.3.2 Quasi-Geometric Monotone Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

5.4 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Chapter 6 Integrability of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1 Weighted Integrability: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 Weighted Integrability: In Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Integrability of Sine Series and Logarithm Bounded Variation

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Logarithm Bounded Variation Conditions: In Real Sense . . . . . . . . . . . . . . 181

6.5 Integrability of Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

6.6 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 7 Other Classical Results in Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.1 Important Trigonometric Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2 An Asymptotic Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Strong Approximation and Related Embedding Theorems. . . . . . . . . . . . .218

7.4 Abel’s and Dirichlet’s Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.5 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Chapter 8 Trigonometric Series with General Coefficients . . . . . . . . . . . . . . . . . . . .234

8.1 Piecewise Bounded Variation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.1.1 “Rarely Changing” Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

8.1.2 Piecewise Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.1.3 Piecewise Mean Value Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2 No More Piecewise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.3 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Index . . . . . . . . . . . . . . . . . . . . . . 249


Voir icon arrow

Publié par

Date de parution

07 novembre 2024

Nombre de lectures

0

EAN13

9782759837175

Langue

English

Poids de l'ouvrage

2 Mo

A Catalogue of Asian Mosses
Category

Ebooks

A Catalogue of Asian Mosses

Yu Jia, Qiang He

A Catalogue of Asian Mosses Alternate Text
Category

Ebooks

Autres

A Catalogue of Asian Mosses

Yu Jia, Qiang He

Book

728 pages

Flag

English

An Introduction to Linear Algebra
Category

Ebooks

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

An Introduction to Linear Algebra Alternate Text
Category

Ebooks

Sciences formelles

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

Book

238 pages

Flag

English

Introduction to Abstract Algebra
Category

Ebooks

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Introduction to Abstract Algebra Alternate Text
Category

Ebooks

Sciences formelles

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Book

186 pages

Flag

English

Managerial Challenges of Industry 4.0
Category

Ebooks

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Managerial Challenges of Industry 4.0 Alternate Text
Category

Ebooks

Gestion et management

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Book

158 pages

Flag

English

Planets and life
Category

Ebooks

Planets and life

Thérèse Encrenaz, Lequeux James, Casoli Fabienne

Planets and life Alternate Text
Category

Ebooks

Sciences formelles

Planets and life

Thérèse Encrenaz, Lequeux James, Casoli Fabienne

Book

166 pages

Flag

English

Car following Dynamics: Experiments and Models
Category

Ebooks

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Car following Dynamics: Experiments and Models Alternate Text
Category

Ebooks

Techniques

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Book

160 pages

Flag

English

The Milky Way
Category

Ebooks

The Milky Way

Françoise Combes, Lequeux James

The Milky Way Alternate Text
Category

Ebooks

Sciences formelles

The Milky Way

Françoise Combes, Lequeux James

Book

195 pages

Flag

English

Global Well-Posedness for Some Fluid Models
Category

Ebooks

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Global Well-Posedness for Some Fluid Models Alternate Text
Category

Ebooks

Sciences formelles

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Book

294 pages

Flag

English

A Monograph of the genus Microtoena (Lamiaceae)
Category

Ebooks

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

A Monograph of the genus Microtoena (Lamiaceae) Alternate Text
Category

Ebooks

Science de la nature

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

Book

150 pages

Flag

English

1D Radiative Fluid and Liquid Crystal Equations
Category

Ebooks

1D Radiative Fluid and Liquid Crystal Equations

Qin Yuming

1D Radiative Fluid and Liquid Crystal Equations Alternate Text
Category

Ebooks

Sciences formelles

1D Radiative Fluid and Liquid Crystal Equations

Qin Yuming

Book

154 pages

Flag

English

Atomic Clusters
Category

Ebooks

Atomic Clusters

Michel Broyer, Patrice Mélinon

Atomic Clusters Alternate Text
Category

Ebooks

Sciences formelles

Atomic Clusters

Michel Broyer, Patrice Mélinon

Book

416 pages

Flag

English

An Illustrated Guide to the Fishes of Indawgyi Lake in Myanmar
Category

Ebooks

An Illustrated Guide to the Fishes of Indawgyi Lake in Myanmar

Dr. Xiao-yong Chen, Tao Qin, Feng Lin, Nay Htet Naing, Thinn Su Tin, Khin Yadanar Htay, Dr. Shu-sen Shu

An Illustrated Guide to the Fishes of Indawgyi Lake in Myanmar Alternate Text
Category

Ebooks

Science de la nature

An Illustrated Guide to the Fishes of Indawgyi Lake in Myanmar

Dr. Xiao-yong Chen, Tao Qin, Feng Lin, Nay Htet Naing, Thinn Su Tin, Khin Yadanar Htay, Dr. Shu-sen Shu

Book

174 pages

Flag

English

What is Space-Time Made of ?
Category

Ebooks

What is Space-Time Made of ?

David IZABEL

What is Space-Time Made of ? Alternate Text
Category

Ebooks

Sciences formelles

What is Space-Time Made of ?

David IZABEL

Book

366 pages

Flag

English

Designing Protected Area Networks
Category

Ebooks

Designing Protected Area Networks

Alain Billionnet

Designing Protected Area Networks Alternate Text
Category

Ebooks

Sciences formelles

Designing Protected Area Networks

Alain Billionnet

Book

372 pages

Flag

English

The basics of electron transport in spintronics
Category

Ebooks

The basics of electron transport in spintronics

Vincent Baltz

The basics of electron transport in spintronics Alternate Text
Category

Ebooks

Sciences formelles

The basics of electron transport in spintronics

Vincent Baltz

Book

170 pages

Flag

English

Alternate Text